

Solid Oxide Electrolysis Cells (SOEC) integrated with Direct Reduced Iron (DRI) plants for producing green steel

Kick-off and preliminary results

Luca Mastropasqua, Jack Brouwer

November 4th, 2021

http://www.apep.uci.edu/H2GS/

UCI ADVANCED POWER AND ENERGY PROGRAM

Disclaimer: "The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government."

Project Goal and Milestones

Advance, demonstrate and optimize a thermally and chemically integrated Solid Oxide Electrolysis Cell (SOEC) system, as co-producer of H_2 and O_2 , with a Direct Reduction Iron (DRI) plant at 1 ton/week of product scale.

Potential Impact

Direct Industrial CO2 emissions	<u>Steel industry:</u> World total 1869 Mton _{steel} 6-6.5% of total anthropogenic CO ₂ emissions	Blast Furnace + Basic Oxygen Furnace (BF+BOF) Hydrogen Direct Reduction (HDR) Hybrid Hydrogen Direct Reduction (Hybrid HDR)			
Other Industry		Units	BF+BOF	HDR	Hybrid HDR
Chemicals and 26% Petrochemicals	Energy intensity	GJ/ton _{crude steel}	19-22	<8	<9
13%	Specific emissions	ton _{CO2} /ton _{crude steel}	1.8-2.1	<0.09	<0.09
Iron and Ste 28%	Specific cost	\$/ton _{eq pig-iron} yr	210	200*	200*
3%	Electric load	GJ _{el} /ton _{crude steel}	-	<7	<7
Aluminium 27%	*At 2 Mton/yr scale				
570		Units	Ref SOFC	HDR	Hybrid HDR
 Iron and Steel Aluminium Pulp a 	nt Ind Paper Hydrogen Eff.	kWh/kg	40	35	-
Chemicals and Petrochemicals Other	Industry Syngas Eff.	kWh/kg	45	-	40
WorldSteel association – World steel in figures 20 International Energy Agency (IEA)	Oxygen Eff.	kWh/kg	6.5	<5	<5

Iron and Steel industry

Technology Impact

Steel production is responsible for the 7% of global anthropogenic CO_2 emissions and a rise of 20% in steel production is predicted until 2040. BF-BOF steel production route produces 71% of total steel:

- Energy intensity: 19-20 GJ/ton_{crude steel}
- Specific emissions: 1.8-1.9 ton_{CO2}/ton_{crude steel} **Reference Integrated Steel Mill:**
- Capacity: 4 Mton_{HRC}/yr
- Total specific emission: 2.01 t_{CO2}/t_{HRC}

University of UC California, Irvine

Background - Direct Reduced Iron

rich)

Reduction with H₂

NFCRC

 $3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O$ $Fe_3O_4 + H_2 \rightarrow 3 FeO + H_2O$ $FeO + H_2 \rightarrow Fe + H_2O$

Reduction with CO

$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO$$

 $Fe_3O_4 + CO \rightarrow 3 FeO + CO_2$
 $FeO + CO \rightarrow Fe + CO_2$

Reduction with $C_{(s)}$

 $CO_2 + C \rightarrow 2CO$

e 2 O 3	Hematite	% Oxygen = 30.05 %
e 3 O 4	Magnetite	% Oxygen = 27.64 %
FeO	Wustite	% Oxygen = 22.27 %
Fe	Iron	% Oxygen = 0 %

METALLIZATION:

$$M [\%] = \frac{Fe_0 [kg]}{Fe_{tot} [kg]} \quad 90\% < M < 96\%$$

CARBON CONTENT:

$$C[\%] = \frac{C_{Fe_0}[kg]}{C_{Fe_{tot}}[kg]} \quad 0.3\% < M < 0.8\%$$

SOEC Steam electrolysis

State of the Art vs. SOEC+DRI

UCI University of California, Irvine

Hydrogen Direct Reduction (HDR)

- SOEC operates as oxygen pump to remove O₂ from shaft furnace top gas
- SOEC exploits the enthalpic content of top gases to perform part of the electrochemical process
- Iron ore is reduced mainly with hydrogen produced by the SOEC
- Carbon is introduced in the cycle only to provide carburization to DRI product
- Excess carbon is oxidised in pure oxygen (produced by SOEC) and captured

NFCRC

UCI University of California, Irvine

SOEC steam electrolysis design

NFCRC

Preliminary thermodynamic performance

$$C [\%] = \frac{C_{Fe_0} [kg]}{C_{Fe_{tot}} [kg]} = 0.85\%$$
mass Carburization
$$M = \frac{Fe_0}{Fe_{tot}} = 97.5\%$$
 Metallization factor

University of California, Irvine

UC

NFCRC

$$PE_{dir}^{HDR} = PE_{RES} + \dot{m}_{NG} \cdot LHV_{NG} = 7.4-8.3 \text{ GJ/ton DRIhot}$$

 $e_{CO_2} = \frac{E_{CO_2}^{HDR}}{m_{DRI}} = 40-60 \text{ kg CO}_2/\text{ton DRI}_{hot}$

$SOEC - CO_2$ and co-electrolysis

$$CO_2 + heat \rightarrow CO + 1/2O_2$$

$$C_n H_m + n H_2 O + heat \rightleftharpoons \left(\frac{m}{2} + n\right) H_2 + nCO$$

 $CO + H_2 O \rightleftharpoons H_2 + CO_2 + heat$

$$E_{Nernst} = \frac{\Delta G_{mix}}{nF} + \frac{RT}{nF} ln \left(\frac{x_{H_2O,cat} x_{CO_2,cat}}{x_{H_2,cat} x_{CO,cat} x_{O_2,an}} \right)$$

Summary

- •Mixture of steam and CO_2 can be electrochemically reduced to produce a syngas and pure oxygen
- •Depending on the operating conditions of the SOEC, methane and other longer hydrocarbon species can be produced inside the cell cathode
- •The endo or exothermicity of the stack is determined by the current density and internal chemical reactions yield

Song et al., Adv. Mater. 2019, 31, 1902033

UCI University of California, Irvine

Hybrid HDR concept – co-electrolysis

- SOEC operates in co-electrolysis mode. Both H₂O and CO₂ are directly converted into H₂ and CO
- Methane can also be formed in coelectrolysis – thermodynamically favored by high pressure, and kinetically enabled by high temperature
- Hybrid HDR enables regulating the DRI carbon content without increasing natural gas make-up
- High-pressure co-electrolysis will be demonstrated

Hardware-in-the-Loop (HIL) SOEC+DRI simulator

Demonstration System Design

14

Project Work Packages

Collaborations and Coordination

Project Partner		Project Role
UNIVERSITY of CALIFORNIA	University of California, Irvine	Coordination; SOEC modelling and control design; Design of DRI+SOEC HIL demo
fuelcellenergy	FuelCell Energy	Design of SOEC prototype; Construction, testing of DRI+SOEC HIL demo
LECAP Laboratorio Energia e Ambiente Piacenza	Laboratorio Energia Ambiente Piacenza	Thermodynamic analysis and layout definition
POLITECNICO MILANO 1863	Politecnico di Milano	DRI modelling and support on HIL demo
Е НАТСН	Hatch	Design scale-up and techno-economic analysis
SoCalGas	Southern California Gas Company	Market insight partner and co-sponsor
NUCOR	Nucor Corporation	Advisor
tenova®	Tenova Inc.	Advisor
ArcelorMittal	Arcelor Mittal	Advisor
MIDREX	Midrex	Advisor

Key takeaways

high temperature industrial processes

Summary

Preliminary performance

Preliminary results show the potential to reduce the primary energy consumption of steelmaking by >64%
 Direct CO₂ emissions can be reduced by >97%

•SOEC systems can be thermally and chemically integrated with

•Both hydrogen and renewable syngas fuels can be directly

produced by SOEC with renewable electricity and thermal

Future steps

- •Demonstration of SOEC operation at pressure in both steam and co-electrolysis
- •Thermodynamic and kinetic analysis of H2+DRI
- •**This project** will demonstrate the HDR and Hybrid HDR scenarios at a TRL = 4 in Danbury (CT)

•Stay tuned for more...

Web: http://www.apep.uci.edu/H2GS/ Luca Mastropasqua: Im I @apep.uci.edu Jack Brouwer: jb@nfcrc.uci.edu

Acknowledgements

Dr. Maurizio Spinelli Dr. Roberto Scaccabarozzi Dr. Manuele Gatti

Prof. Matteo C. Romano Prof. Stefano Campanari Prof. Stefano Consonni Prof. Carlo Mapelli Prof. Silvia Barella fuelcellenergy

Dr. Hossein Ghezel-Ayagh

Dr. Michael Pastula

🖉 НАТСН

Dave Baldonieri Dr. Iakov Gordon Gino De Villa Dr. Richard Elliot SoCalGas Sempra Energy utility Alan D. Leung

Jun Yong Kim

NUCOR

tenova®

