

Solid Oxide Electrolysis Cells (SOEC) integrated with Direct Reduced Iron (DRI) plants for producing green steel

aScale

Kick-off and preliminary results

Luca Mastropasqua, Jack Brouwer

November 4th, 2021

<http://www.apep.uci.edu/H2GS/>

UCI ADVANCED POWER AND ENERGY PROGRAM

Disclaimer: "The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government."

Project Goal and Milestones

Advance, demonstrate and optimize a thermally and chemically integrated Solid Oxide Electrolysis Cell (SOEC) system, as co-producer of H_2 and O_2 , with a Direct Reduction Iron (DRI) plant at 1 ton/week of product scale.

Potential Impact

Im I @apep.uci.edu

Iron and Steel industry

Technology Impact

Steel production is responsible for the 7% of global anthropogenic $CO₂$ emissions and a rise of 20% in steel production is predicted until 2040. BF-BOF steel production route produces 71% of total steel:

- Energy intensity: 19-20 GJ/ton_{crude steel}
- Specific emissions: $1.8-1.9$ ton_{CO2}/ton_{crude steel} **Reference Integrated Steel Mill:**
- **Capacity: 4 MtonHRC/yr**
- **Total specific emission: 2.01 t_{CO2}/t_{HRC}**

 $Im I@$ apep.uci.edu

University of UCI California, Irvine

Background - Direct Reduced Iron

rich)

Reduction with H₂

NFCRC

 $3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O$ $Fe₃O₄ + H₂ \rightarrow 3 FeO + H₂O$ $FeO + H₂ \rightarrow Fe + H₂O$

3Fe2O³ + CO →2Fe3O⁴ + CO Fe3O⁴ + CO → 3 FeO + CO² FeO + CO → Fe + CO² **Reduction with CO**

Reduction with C(s)

 $CO₂ + C \rightarrow 2CO$

METALLIZATION:

$$
M\ [\%] = \frac{Fe_0\ [kg]}{Fe_{tot}\ [kg]} \qquad 90\% < M < 96\%
$$

CARBON CONTENT:

$$
C\,\left[\% \right] = \frac{C_{Fe_0}\,\left[kg\right]}{C_{Fe_{tot}}\,\left[kg\right]} \qquad 0.3\% < M < 0.8\%
$$

 $Im I@$ apep.uci.edu

SOEC Steam electrolysis

 Im Ω apep.uci.edu

State of the Art vs. SOEC+DRI

University of
California, Irvine UCI

Hydrogen Direct Reduction (HDR)

- **SOEC** operates as oxygen pump to remove O_2 from **shaft furnace** top gas
- SOEC exploits the enthalpic content of top gases to perform part of the electrochemical process
- Iron ore is reduced mainly with hydrogen produced by the SOEC
- Carbon is introduced in the cycle only to provide carburization to DRI product
- Excess carbon is oxidised in pure oxygen (produced by SOEC) and captured

NFCRC

University of
California, Irvine UCI

SOEC steam electrolysis design

NFCRC

 $Im (Qapep.uci.edu)$

Preliminary thermodynamic performance

$$
C [%] = \frac{C_{Fe_0}[kg]}{C_{Fe_{tot}}[kg]} = 0.85\% \text{mass} \quad \text{Carburization}
$$
\n
$$
M = \frac{Fe_0}{Fe_{tot}} = 97.5\% \quad \text{Metallization factor}
$$
\n
$$
PE_{dir}^{HDR} = PE_{RES} + \dot{m}_{NG} \cdot LHV_{NG} = 7.4-8.3 \text{ GJ/to}
$$
\n
$$
R_{Si} = \frac{E_{CO_2}^{HDR}}{2} = 40.60 \text{ kg} \cdot \text{G} \
$$

University of
California, Irvine

UCI

NFCRC

 $e_{CO_2} =$ m_{DRI} $= 40$ -60 kg CO₂/ton DRI_{hot}

$SOEC - CO₂$ and co-electrolysis

Temperature range: **600-850°C**

REDOX

 $H_2 O + \textbf{heat} \rightarrow H_2 + 1/2O_2$ $CO₂ + heat \rightarrow CO + 1/2O₂$

$$
C_nH_m + nH_2O + \text{heat} \rightleftharpoons \left(\frac{m}{2} + n\right)H_2 + nCO
$$

$$
CO + H_2O \rightleftharpoons H_2 + CO_2 + \text{heat}
$$

$$
E_{Nernst} = \frac{\Delta G_{mix}}{nF} + \frac{RT}{nF} \ln \left(\frac{x_{H_2O,cat} \ x_{CO_2,cat}}{x_{H_2,cat} x_{CO,cat} \ x_{O_2,an}} \right)
$$

Summary

- •Mixture of steam and CO_2 can be electrochemically reduced to produce a syngas and pure oxygen
- •Depending on the operating conditions of the SOEC, methane and other longer hydrocarbon species can be produced inside the cell cathode
- •The endo or exothermicity of the stack is determined by the current density and internal chemical reactions yield

Song et al., Adv. Mater. 2019, 31, 1902033

University of
California, Irvine UCI **NFCRC**

Hybrid HDR concept – co-electrolysis

- **SOEC** operates in co-electrolysis mode. Both H_2O and CO_2 are directly converted into H_2 and CO
- Methane can also be formed in coelectrolysis – thermodynamically favored by high pressure, and kinetically enabled by high temperature
- Hybrid HDR enables regulating the DRI carbon content without increasing natural gas make-up
- High-pressure co-electrolysis will be demonstrated

 $Im I@$ apep.uci.edu

Hardware-in-the-Loop (HIL) **SOEC+DRI simulator**

NFCRC

Project Work Packages

Collaborations and Coordination

Key takeaways

high temperature industrial processes

Summary

Preliminary performance

•Preliminary results show the electric input potential to reduce the primary energy consumption of steelmaking by **>64%** •Direct $CO₂$ emissions can be reduced by **>97%**

•**SOEC** systems can be thermally and chemically integrated with

•Both **hydrogen** and **renewable syngas fuels** can be directly produced by SOEC with renewable electricity and thermal

Future steps

- •Demonstration of SOEC operation at pressure in both steam and co-electrolysis
- •Thermodynamic and kinetic analysis of H2+DRI
- •**This project** will demonstrate the HDR and Hybrid HDR scenarios at a TRL = 4 in Danbury (CT)

•Stay tuned for more…

Web:<http://www.apep.uci.edu/H2GS/> Luca Mastropasqua: <u>Im1@apep.uci.edu</u> Jack Brouwer: jb@nfcrc.uci.edu

Acknowledgements

Dr. Maurizio Spinelli Dr. Roberto Scaccabarozzi Dr. Manuele Gatti

Prof. Matteo C. Romano Prof. Stefano Campanari Prof. Stefano Consonni Prof. Carlo Mapelli Prof. Silvia Barella

fuelcellenergy

Dr. Hossein Ghezel-Ayagh

Dr. Michael Pastula

E HATCH

Dave Baldonieri Dr. Iakov Gordon Gino De Villa Dr. Richard Elliot

SoCalGas A Sempra Energy utility Alan D. Leung

Jun Yong Kim

NUCOR

tenova³

